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Viscous flow in a deformable rotating container 
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The steady-state flow in a rotating container is examined when the container is 
deformed into an ellipsoidal figure which is fixed in inertial space. The analysis 
is carried out for a fluid of small viscosity, and to the second order in Rossby 
number. Results show a vortex existing along the rotation axis, this being an 
interior manifestation of non-linear boundary-layer effects. These effects are a 
direct consequence of the forced oscillation being at  twice the rotational fre- 
quency. The configuration is chosen to suggest the effects of gravitational body 
tides on the dynamics of the core of the earth. This problem is related to the 
similar problem of a precessing spheroid, and an experiment is described which 
tests the present theory and confirms previous experimental data from precessing 
spheroids. 

1. Introduction 
This paper examines the stationary flow of a slightly viscous and incompressible 

fluid in a rotating container when the container is deformed into an ellipsoidal 
figure fixed in inertial space. The object,ive is to determine the effects caused by 
the non-axisymmetric shape of the container to second order in Rossby number. 
There is generally a slight mismatch between the velocity of the interior geo- 
strophic flow and the velocity of the container surface. This results in a forced 
oscillation in the boundary layer, and a consequent second-order deviation from 
constant vorticity in the interior. This deviation appears as a line vortex oriented 
along the vorticity vector of the fluid. 

A laboratory experiment is described, which duplicates this model. The results 
confirm the main aspects of the theory, yet show significant higher-order devia- 
tions from the theory. The nature of the dynamic resolution of the singular 
properties associated with a vortex is discussed, although the details involved in 
the boundary-layer interaction were not directly observable. 

The study of this model is a consequence of an interest in the flow in the core of 
the earth, the ellipsoidal shape of the container being used to synthesize the 
effects of gravitational body tides. Such tides could also have an effect on the 
dynamics of the core of the sun, and may be relevant to other astrophysical 
problems. The flows are also interesting in their own right because of their 
physical nature and their mathematical properties. 

For this study, the configuration is an ellipsoidal figure, 2,  which rotates 
about one of its axes and has its figure fixed in an inertial frame of reference. The 
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velocity, V, of the bending or stretching surface, is known. Contained within C is 
an incompressible, Newtonian fluid of kinematic viscosity v and density p. The 
mean angular velocity of X is w, and the equation for C is simply: 

x2 y2 22 x:-+-+- = 1 
a2 b2 c2 

in a central, non-rotating co-ordinate system aligned along the principle axes of 
C. It will be assumed that 

w = wlc. 

Since this model is limited to the case in which w is aligned along one of the 
axes of C, no tiltover of the vorticity vector away from w results. This case is 
chosen in order to illustrate the new aspects of the biharmonic forcing of the 
tides, while avoiding an unnecessarily complicated analysis. The non-equatorial 
deformation produces a tiltover, the direct result of which is analyzed by Busse 
(1968a). In  his paper he discusses precession-forced tiltover, but the conse- 
quences are the same. A general calculation of the tiltover for an earth model, 
including gravitational body tides, is given by Suess (1970). 

The basic difference between the tiltover and the tidally induced flows is the 
forcing frequency. For equatorial tides, this frequency is 2 w :  for the tiltover, it is 
w .  Both frequencies correspond to the frequency of an inertial mode of oscilla- 
tion of the fluid. It should be mentioned that the 2 0  inertial mode has been 
thought t o  be physically forbidden, because oE the singular nature of its pre- 
dicted velocity and pressure fields. I n  this paper the theoretical and experi- 
mental results confirm the existence of the mode, and the experiment shows the 
physical resolution of its supposed singular nature. Described with respect to  the 
rotational equator of the fluid, tiltover causes a cylindrical shear zone to occur 
between the f 30" latitude circles. The tides cause a shear zone to occur between 
the f 90" latitude points, or along the axis of rotation of the fluid. This tidal shear 
is elso excited to a lesser degree by the tiltover in a rigid spheroidal container, 
because the streamlines become slightly elliptical to produce a small 2w effect. 
In  fact, both experimentally and theoretically, it is only possible to isolate the 
20 effect, the w effect always produces a higher-order 2w effect either through 
the above-rnentioned induced ellipticity of the streamlines or through a harmonic 
excitation. 

* 
( 2 )  

2. Analysis for an equatorial tide 

co-ordinate system used to define C in (1 ) .  The equations of motion 
A stationary solution is sought to the equations of motion, as written in the 

(v. V ) v  = - V ( P / p )  + VVZV, 

continuity v.v = 0, 

and the viscous fluid boundary condition 

v = v on c 
completely specify the problem. However, even though the problem is well 
posed, it is not possible to find a general solution which satisfies ( 5 ) .  In order to 
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find a useful solution, boundary-layer approximations are used, which require 
that the dissipative terms be small with respect to the pressure gradient and 
inertial terms-except near 2. The general procedures used in such an analysis 
are detailed by Greenspan (1965, 1968), Busse (1968a), and Stewartson & 
Roberts (1 963). 

The calculation depends on two dimensionless parameters, which in this case 
are required to be small compared to one. First, there is the Ekman number: 

E = v/wa2. (6) 

The other parameter is 8, the Rossby number. Normally, e is the amplitude of the 
boundary-layer correction velocity, so that its exact value is a consequence of the 
model. In proceeding with the analysis, it would quickly be found that a first- 
order linear solution to (3) and ( 5 )  would necessitate an order E* correction to 
satisfy the continuity equation. There would also be a non-linear correction of 
order 8 contributed by the advective terms in (3). Instead of making such 
corrections step by step, it is assumed apriori that the variables can be expanded 
in a double series in powers of E* and E .  The validity of such an expansion is 
questionable for powers of E larger than E*, but in most physical cases the value 
of E is so small that it is unnecessary to consider higher orders. In  addition, 
experiments confirm the general validity of the theory, and the calculations are 
asymptotically correct. The formal expansions are written in (7 ) .  

m 

The solution will be carried to order e2Eo. Usually the Eg term would be 
investigated first, because this resolves some unusual aspects of the mathematics. 
Here, the first non-linear correction to the flow is of greatest interest physically 
and experimentally, because the axial shear zone appears first in the s2E0 terms. 

Using the characteristic parameters of the model, the variables are non- 
dimensionalized as follows: 

t = [w-]It’, r = [alr’. (8% b )  

Dimensionless velocities and pressure are found using these scales. Dropping 
the primes, (3) becomes 

(4) and ( 5 )  are unchanged. Supposing there are no significant shears in the interior 
Aow, the following separation is made 

(v.V)V = -VP+EV2v;  (9) 

v = q+u, P =p+q5, (10a, b )  

where q and p are the velocity and pressure in the essentially inviscid interior, 
and u and q5 are the velocity and pressure in the boundary layer. u accounts for 
the non-uniqueness of q, as well as completing the satisfaction of the no-slip 
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boundary condition. The rest of the boundary-layer approxiination is contained 
in the introduction of a scaled boundary-layer co-ordinate 

c =  -(r-rz).GE4. (11 )  

rc is the vector to Z, and ^n is the unit outward normal on Z. It is assumed that 
u is non-zero only near X, and separate equations for q and u are found. The 
dissipative terms are now not present in the interior equations, but are of order 
one in the boundary-layer equations. The expansions (7a )  and (7 b )  are applied to 
q, u,p, and $. u will have no u: contribution, sinceeis defined to be its amplitude. 
Substituting the expansions into the separated equations results in an infinite 
set of ordered equations, with the lower orders being of practical interest and 
theoretical validity. The first consequence, from the boundary-layer continuity 
equation, is a A a A  

- (u;. ;IL) = - (UE. YL) = 0. ac ac 
From the boundary conditions, this implies 

(13) 
h A u;.n = u;.n = 0. 

q: = L x r. 

To keep the expansions consistent as the ellipsoid approaches a sphere, 900 is 
defined by 

Then, the interior order CEO problem is 

(14) 

This is solved exactly by a constant vorticity flow. The only parameter is the 
equatorial ellipticity which, from (l), is 

b2 - a2 
e + -  

bz+a2' 
The solution is given by 

qz+sq; = E x r + e ( $ g + j X ) .  

The normally undetermined magnitude of the vorticity has been set equal to 2 
(or 20 in dimensional units), in anticipation that it is the correct value. It is 
noted that (19) is an exact non-linear solution to (9) and to the continuity 
equation, failing only by not satisfying the complete boundary condition. It is 
called a Poincar6 type solution (Lamb 1932, p. 724), and is generally valid for 
tidally deformed precessing and rotating containers when the containers can be 
described by a second-order figure. This solution is also an exact geostrophic 
flow, because the container has closed concentric contours, each of constant total 
height. 

Now, the order eEo boundary-layer equations must be considered. The pressure 
is removed by performing the operation: 

6 x (equation) - ii2 x (2 x (equation)) 
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to obtain 

( g - 2 i g . 2 )  (6 x ui+iui) = ((2 x )-i2 x (2 x 1) ((g x r . V ) u i - E x  u;), (20) 

with eui=V-qg-eqi on C. (21) 

The solution depends upon the explicit form of V. If it is taken that, to order e, 
C bends but does not stretch, then the resulting expression for V is 

v = ( 1 + ~ e c o s 2 ' p ) E x r - e s i n 2 ~ ~ x ( ~ x r ) ,  (22) 

'p being the azimuthal angle measured from the x axis. Using this, (20) and (21) 
can be solved exactly. However, consistent with the ordering, the boundary 
condition shall be applied only to order e, and higher-order terms are then put 
into the e2Eo boundary-layer equation. A solution to (20) is sought which satisfies 
(20) and (13)) and which is zero far from C. It is 

e 
u; = , { [ E x r - i F i x  (fxr)l[e2i~e-*+5+e-zi~e-*-51 

+ [ E  x r + is x (f x 1-11 [e--Biqe-*? 5 + ezipe-*y51). 

A* = (1 & i) (1  * cos 8)k  

U i . 2  = O+O(S)) 

G = ?sin B + E cos 8 + ~ ( e ) ,  

and so (23) does not exactly satisfy (13). In  (24)) 8 is the colatitude. The roots of A 
are to be chosen such that u; decreases away from Z;. Since luil = O(l ) ,  the 
appropriate value of e can now be taken as 

(23) 

(24) 

The quantities with asterisks are complex conjugates, and: 

I n  keeping with the comments preceding (23)) 

b2 - a2 
b2+a2' 

e = e = -  

The characteristic boundary-layer thickness is 

6, = I/&, 

so that a zero in h indicates the locations where 6 becomes infinite. Such zeros are 
a t  8 = 0, 7r, the two poles of rotation of the fluid. These singularities imply a 
breakdown in the boundary-layer theory to  this order, the resolution of which 
requires investigation to higher orders of E. However, the primary ph ysicd 
consequences of the singularities on the bulk of the flow are shown by the next 
order in e. 

It is possible to make two additional observations. First, the higher harmonics, 
sin 2nq and cos Sn'p, may be present in V without seriously modifying u;. This is 
because the result for A?) is 

A:"' = (1  & i) (n * cos 8)t ,  (27) 

which has no new zeros, thus resulting in no new singularities. This point is 
made to show that deviations of V from the particular form given by (22) are 

13 F L M  45 
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insignificant both for radial terms and for higher harmonics. Consequently, the 
experimental investigation is made simpler since only the amplitude of e and 
the 29 general dependence of V are critical in the results. The other observation is 
that, by integrating the EEO continuity equation, it is found that the mass efflux 
from the boundary in this order is infinite at the points where the boundary- 
layer thickness becomes infinite. 

Before continuing, it will be helpful to review what has been done and to make 
a few comments. First, the relation for V has resulted in no radial component in 
u: to this order. Only the e z i P  forcing, added to the solid rotation, is of fundamental 
importance in the dynamics. Next, it is easily shown that ui has zero azimuthal 
average. This means that the magnitude of the vorticity is 2 to this order, just the 
choice made earlier. Continuing, the boundary-layer singularity and the infinite 
efflux of this solution suggest some internal modification or deviation from solid 
rotation. Since such a deviation does not exist to any order in the linear theory, 
the next order in E is the most likely path to show the interior modification. 
Formally, either the E E ~  or the s2E0 orders may be considered next. The magni- 
tudes of e2 and EEB are comparable in the earth, and can be made equal experi- 
mentally, so that taking the e2 order next is also valid physically. 

3. The response for the second order in Rossby number 
As was mentioned previously, the semidiurnal forcing frequency is the only 

important factor in determining u. In  fact, u& had no radial component to the 
previous order. Hence, for simplicity, but without loss of generality, the shape of 
Z can be taken as a sphere, and V will be presumed to now represent a stretching 
surface with a primarily cos 2y variation. 

v = (1++ecos2y)Exr. 

The results will only differ quantitatively by order e. This can be synthesized in 
the previous results by letting 

q i + O ,  e+O 

but keeping E fixed at  the desired amplitude of excitation (thus invalidating (25)). 
This choice automatically has the surface stretching with the prescribed ampli- 
tude E ,  and gives exactly the induced boundary-layer velocity just calculated, 
but with no O(e) errors. Equation (19) is still an exact solution to the complete 
momentum equation, and is a geostrophic solution. The order e2EO momentum 
equation, for e = 0, is 

(qi . v)$ x r + ( E  x r . V)qi + (qi . v)q; + v p i  = 0. (28a) 

Because qi is zero, this is identical in form to (15). The continuity equation and 
the boundary condition are also similar, being 

V.q!=O,  q i . f i = o  on X, (29L (30) 

where, because of the modified geometry, 

A = ?sine+hoso.  
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Equations (29) and (30) can be used to reduce the momentum equation to 

2 $ x  q;+vp; = 0. (28b) 

q; = E x  rf(lf x rl), 

A solution like (19) could be used for these equations, but it is not the most general 
choice. The general solution to (28b), (29)) and (30) is 

(31) 

with the function f being completely arbitrary. Thus, a deviation from constant 
vorticity is immediately suggested. The boundary-layer problem in the second 
order is given by 

a 
- (u”, 2) + 2 .  v x (2 x u;) - 6 x u;.v x 2 = 0) ac (33) 

qg+ug=O on X. 134) 

(q:+u;).2=0 on E. (35) 

First, carrying out the boundary condition to order eE8, it is found that 

Hence, the second inhomogeneous term on the right-hand side of (32) vanishes 
for an equatorial tide, 

The arbitrary function f will be determined by the solvability condition for the 
interior equations of the order e2E*. Restricing them to just that part of the 
problem which is axisymmetric with respect to E ,  they have the form 

2f x q”lvp; = 0, 

V.q? = 0, 

(q”,uu”,).&= 0 on X. 

An immediate observation is that 

( i . V ) q ?  = 0. (39) 

This is equivalent to the Taylor-Proudman theorem, but applies to the order 
e2Et interior velocity. The consequence is that the part of the influx into the 
interior, which is symmetric with respect to the axis and the equatorial plane, has 
to  vanish a t  any distance from the axis. This condition alone suffices to determine 
f, so it is necessary only to solve the axisymmetric part of the boundary-layer 
problem. 

Since the non-axisymmetric part of the inhomogeneity in (32) is quadruply 
periodic about the axis, the corresponding part of (39) for the order ezEA interior 
equations is generally fulfilled, which follows directly from the fact that no 
quadruply periodic solutions to the homogeneous part of the interior s2EJ 
problem can exist (Greenspan 1965, 1968). 

Dividing the solution of (32) into two steps, the solution U, of the homogeneous 
equation together with the inhomogeneous boundary condition is found first. 
Then, the solution uB of the inhomogeneous equation with the boundary con- 
dition uB = 0 on C is added. Since only the axisymmetric part of the problem 

13-2 
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must be solved, the inhomogeneity in (32)  is symmetric with respect to the 
equatorial plane. Hence, according to (39), the influx into the interior has to 
vanish. 

r2xuEdc+,iZx uE.VxAd<= O 
S O W  

This will be sufficient to determinef. Then, by the same method used in $ 2 ,  it is 
found that (2  x u, + iu,) = - [i;. x (f x r )  + itĉ  x r ] ~ ( r ) e - ~ c ,  

h2= 2 i i . R  = 2icos8,  

(41) 

such that 

ug = -f(r) ( (6  x (tc^ x r) + if x r)e-Ac + (2 x ( f  x r) - if  x r)e-A*c}. (42) 

The corresponding influx into the interior, from (40), is 

The solution for uB is a bit more lengthy. The equation is 

(&- 2 i i .  6) (2  x u,+ iu.) = [( - 6 x ) + ir2 x ( R  x )] (UZ. V)u& 

Using (23) for u;, the inhomogeneous term can be written as follows (Busse 
1968 a )  : 

[( - i;. x ) + i i ~  x (2 x 11 (u;.v)u: = - i f . @  x r-iR x ( E x  r)l 
A 

he- (A i+A- )C+-  (1 -E.k)e-(h++A-)C 
2h- 

Now, using the boundary condition 

ug= 0 on Z; 

the solution is then that given below: 
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Let 

(45) 

(46) 

FIGURE 1. f(r), the order e2 angular velocity for tidally excit,ed flow, versus radius. The 
theoretical result is plotted as a solid line, and the experimental result is plotted as a 
dashed line. The experimental parameters are: w = 53 rev/min clockwise, streak interval 
= 60 revolutions, vertical container radius = 7.95 em, e = 0.025. 

and define (47)  

Then, using these definit,ions, the influx corresponding to this solution is found as 
follows : 

h n x us = - &G x ( E  x r) ( F ~  - F $ )  - giE x r(Po++$) 

-S,m 2.v x (2 x u,)dC = ~ A . V  x ( [ r ~  x ( f  x r)] ( F + F * ) }  

+ @. V x {i(E x r) (F - F*)}. (48) 

It is seen that only I m  (3) need be investigated in detail, since the term propor- 
tional to IF +F*) is vanishing for any axisymmetric function F .  The consequent 
result for f(r) is 

f(r) = -9iJ( , f .G, , IL."I(F-F*).  f . 2  (49) 
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This function, f ( r ) ,  represents the difference in angular velocities between the 
fluid and the container, divided by e2. It is plotted, as a solid line, in figure 1. The 
dotted line shows the experimental results, which will be discussed in the next 
section. f ( r )  falls off as l / r  near the axis, and goes to zero as r approaches one. 

These results can be directly combined with those of Busse, after taking into 
account the proper order of the shear. This is because there is no cross coupling 
between the two axially symmetric solutions, despite the non-linear character 
of the analysis. The combined results are discussed in terms of geophysical 
parameters by Suess (1969, 1970). 

FIGURE 2. Schematic of the experimental apparatus; water tank, container, 
and deforming ring. 

4. Laboratory experiment 
In  order to test the previous calculations, special apparatus was built. It 

consists of a clear, flexible water-filled ball, wkich is placed in a water-filled tank 
in order to isolate the ball from gravity. A shaft passes from the ball, through a 
water-tight seal, to a motor beneath the tank to provide for the rotation of the 
ball. The ball is deformed into an ellipsoid by a flat stainless-steel ring passing 
around its equator. The ring can be compressed along an axis through the 
equator, to give varying degress of ellipticity. In addition, the ring has per- 
forations through which water may be pumped to form a friction decreasing 
water cushion between the ring and the ball. Along the long axis of the deformed 
ring, water may be sucked out, rather than pumped in, to force the ball to 
conform more nearly to the shape of the ring. A simplified sketch of the apparatus 
appears in figure 2. 

The purpose of the experiment is to observe and confirm the theoretical 
results of the previous sections. However, since the ring can also be tilted 
through its short axis, the apparatus can be used to perform a much wider 
range of experiments. With a tilted ring, off-equator tides may be investi- 
gated, and the similarity of the flow to that in a precessing spheriod verified. 
The tiltover, and westward drift of the fluid resulting from the tiltover, may be 
measured and compared with previous theoretical and experimental work. Also, 
the stability of the flow to increasing tiltover, as well as to increasing equatorial 
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ellipticity, may be measured. A rotating table can be used to show the straight- 
forward combination of precession and tidal driven flows. Finally, a rotating 
table can also be used to verify the width of the forced oscillation peak. This is 
done by placing the apparatus on the table, locating the ring on the equator, and 
rotating the table as the container is rotating. The fluid then sees a rotating 
ellipsoidal container, and is forced at  a frequency either larger or smaller than 
2w, depending upon the sense of rotation of the table. These studies are still 
being carried out and will be reported on elsewhere. Here, the resultsfor equatorial 
tides and laminar flow will be given and compared with the theory for any notable 
deviations. These results alone are a new and unique laboratory measurement of 
steady flows in a container, rotating fluid. 

Measurements of the flow were made by inserting a dye streak across the 
interior of the container, at  the equator, and measuring the dye trace as a 
function of time. Superposition of many streaks, individually produced at 
short intervals, allows fair resolution in the central region of the container, and 
very nicely shows the general features of the flow. The flow shown by the dye 
entirely disappears if e is adjusted to zero, ensuring that the source of the flow is 
truly Dhe ellipticity of the equatorial streamline. 

Two qualitative features are immediately illustrated by these dye streaks. 
First, the largest angular velocity in the rotating system is by far that at and near 
the axis of rotation. It is a retrograde shear zone orientated along the rotation 
axis and presents much the same aspect as that suggested by the solid line in 
figure 1 .  Also shown is a slower retrograde angular velocity peaking roughly at 
r = 4. This is not present in the calculated values for f ( r ) ,  and so represents a 
measura.ble deviation from the theory. Because this feature is probably not 
simply a higher-order phenomenon in the set of equations, it must indicate a 
fundamental failing of the theory. It may be accounted for by interior viscosity 
effects not presently included in the interior equations. 

Reducing the data to a form equivalent to f(r), and plotting it alongside the 
computed f ( r ) ,  gives the results shown as a dotted line in figure 1.  The experi- 
mental results have approximately the theoretical radial dimension of 0.1 radii, 
but do not approach the l / r  asymptotic value in f ( r )  until significantly smaller 
values of r .  The hump at r = 4 now appears as a minor feature. However, the 
interaction producing this motion may be what leads to the suppression of the 
experimental profile, to almost exactly zero, down to a radius of about 0.1 radii. 
That t,he experimental profile does seem to approach 1/r eventually is very 
encouraging, indicating that viscosity effects are not completely dominant in 
this region. 

The other quantitative aspect, which may be examined, is whether the 
amplitude of the vortex velocity depends on the square of the Rossby number. 
This is equivalent, in the experiment, to showing the dependence on e, the 
equatorial ellipticity. This comparison is shown in figure 3, with the data points 
plotted as circles. Also shown in this figure is the dependence of the flow a t  
r = $, on e with the data points being plotted as triangles. First, it is noted that 
the best fit line through the circles has a slope of almost exactly i. This means 
that the angular velocity, at r 2 0, depends on the square of the ellipticity-as the 



200 8. T. Suess 

theory suggests. The line through the r = 8 points is much steeper, indicating a 
very weak dependence on Rossby number. It may also be a curve, and in fact it 
may not even show a significant dependence on Rossby number. 

It was mentioned, in $ 1 ,  that precession driven flows also exhibit an axial 
vortex. The origin of this, in a spheroid, can be seen as follows. Precession causes 
the fluid vorticity vector to tilt away from the angular velocity vector of the 
container. When tilted, the streamlines become elliptical, due to the oblateness 
of the container, by an amount proportional to the oblateness and the tiltover 
angle. If 7 is the oblateness, and y the tiltover, then the equivalent streamline 
ellipticity is (77). Observations of the axial vortex in these precessing, rigid 
containers show that its amplitude does depend on (yy)%, lending additional 
experimental support to the theoretical results of $$2 and 3. These experimental 
results are from the work of Malkus which is, unfortunately, still unpublished. 

- 1  
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The quantitative accuracy of the results reported here is not too high, as 
indicated by the error bars in figure 3. However, it  is sufficient to show, and 
confirm, the roll of the interaction of the semi-diurnal forcing with the inertial 
mode of the same frequency in producing an interior deviation from constant 
vorticity. The deviation is not precisely that predicted, the theoretical results 
being singular, but the amplitude dependence on Rossby number agrees well. 
The asymptotic approach of the angular velocity to l/r, for very small values of r ,  
seems to be reached in the experiment. The actual flow, a t  r = 0, may deviate 
from I / r ,  but the experimental resolution of this region is very difficult. 

The experiment can be refined, and used to study many other phenomena. 
Besides those cases mentioned earlier, there are many time-dependent flows 
attainable by using more general deformations of the container. In fact, the 
deformability of the container is perhaps the most interesting aspect of this 
experiment, offering many possibilities. 



Viscous flow in a deformable rotating container 201 

5. Discussion 
Reviewing the calculations, they can be summarized as follows. First, the 

inviscid interior flow and the first-order boundary-layer correction were found. 
Next, instead of going to higher order in Ekman number to compensate for the 
first-order boundary-layer efflux, the second order in Rossby number effects was 
investigated. The second-order flow shows a retrograde vortex being formed along 
the rotation axis, whose vorticity amplitude increases as l / r  near the axis and is 
zero at  r = 1. Finally, an experiment is described which verifies the main results 
of the theory, and suggests where and how the theory fails. All of these calcula- 
tions are for laminar, non-stratified flow of low Ekman and Rossby numbers. The 
results are interesting enough to stand alone, on their own merit, in explaining 
the source and nature of a steady-state laboratory vortex. In  addition, they can 
be used to make relevant hypotheses about the dynamics, and the source of waves 
and turbulence, in the core of the earth and in similar astrophysical situations. 

It should be noted that the actual calculation for this second-order effect is 
somewhat simpler than that required by Busse. This is due to the absence of 
precession, and to the simpler geometry of having the boundary-layer singularities 
and the shear zone on the rotation axis. Thus, if a detailed analysis of the singular 
region were to be made, the surface could, to first order, be taken as horizontal. 
Busse (1968b) and Stewartson (1957, 1966) showed that having a sloping surface 
at  the boundary-layer singularity and shear-layer intersection with the surface 
presented no fundamental theoretical restrictions, but did make the details of 
the analysis much more complex and obscure. They both resorted to planar 
geometries for their preliminary calculations. Consequently, the model dis- 
cussed here offers a better choice for understanding and studying the basic 
nature of boundary-leyer singularities, the excitation for free shear layers, and 
internal viscosity effects. 
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